Domination game played on trees and spanning subgraphs
نویسندگان
چکیده
The domination game, played on a graph G, was introduced in [3]. Vertices are chosen, one at a time, by two players Dominator and Staller. Each chosen vertex must enlarge the set of vertices of G dominated to that point in the game. Both players use an optimal strategy–Dominator plays so as to end the game as quickly as possible, Staller plays in such a way that the game lasts as many steps as possible. The game domination number γg(G) is the number of vertices chosen when Dominator starts the game and the Staller-start game domination number γ′ g(G) when Staller starts the game. ∗Supported by the Ministry of Science of Slovenia under the grants P1-0297 and J1-2043. The author is also with the Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana. †Research supported by the Hipp Endowed Chair in Mathematics and the Wylie Enrichment Fund of Furman University. Part of the research done during a sabbatical visit at the University of Ljubljana. 1 Pr ep ri n t se ri es , I M FM , I S S N 2 23 220 94 , n o. 1 16 2, S ep te m be r 27 , 2 01 1
منابع مشابه
Paired-Domination Game Played in Graphs
In this paper, we continue the study of the domination game in graphs introduced by Bre{v{s}}ar, Klav{v{z}}ar, and Rall. We study the paired-domination version of the domination game which adds a matching dimension to the game. This game is played on a graph $G$ by two players, named Dominator and Pairer. They alternately take turns choosing vertices of $G$ such that each vertex chosen by Domin...
متن کاملOn the Computational Complexity of the Domination Game
The domination game is played on an arbitrary graph $G$ by two players, Dominator and Staller. It is known that verifying whether the game domination number of a graph is bounded by a given integer $k$ is PSPACE-complete. On the other hand, it is showed in this paper that the problem can be solved for a graph $G$ in $mathcal O(Delta(G)cdot |V(G)|^k)$ time. In the special case when $k=3$ and the...
متن کاملGuarded subgraphs and the domination game
We introduce the concept of guarded subgraph of a graph, which as a condition lies between convex and 2-isometric subgraphs and is not comparable to isometric subgraphs. Some basic metric properties of guarded subgraphs are obtained, and then this concept is applied to the domination game. In this game two players, Dominator and Staller, alternate choosing vertices of a graph, one at a time, su...
متن کاملTOTAL DOMINATION POLYNOMIAL OF GRAPHS FROM PRIMARY SUBGRAPHS
Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set in $G$ and denoted by $gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=sum d_t(G,i)$, where $d_t(G,i)$ is the numbe...
متن کاملDomination game critical graphs
17 The domination game is played on a graph G by two players who alternately take 18 turns by choosing a vertex such that in each turn at least one previously undominated 19 vertex is dominated. The game is over when each vertex becomes dominated. One 20 of the players, namely Dominator, wants to finish the game as soon as possible, while 21 the other one wants to delay the end. The number of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 313 شماره
صفحات -
تاریخ انتشار 2013